
Towards Adaptable Humanoid Control via Adaptive Motion Tracking

Tao Huang2,1 Huayi Wang1,2 Junli Ren1 Kangning Yin1,2 Zirui Wang1 Xiao Chen1

Feiyu Jia1 Wentao Zhang1 Junfeng Long1 Jingbo Wang1,† Jiangmiao Pang1,†
1Shanghai AI Laboratory 2Shanghai Jiao Tong University †Equal Advising

Website: adamimic.github.io Code: https://github.com/InternRobotics/AdaMimic

Fig. 1: Overview. Our method, AdaMimic (adaptive motion tracking), achieves agile humanoid whole-body adaptation from only a single reference motion
while consistently preserving the underlying motion patterns. This enables adaptable control across diverse tasks, as illustrated by the varied outcomes: (a)
higher jumping height, (b) extended movement in badminton hitting, (c) extended movement in tennis hitting, and (d) longer jumping distance.

Abstract— Humanoid robots are envisioned to adapt demon-
strated motions to diverse real-world conditions while accu-
rately preserving motion patterns. Existing motion prior ap-
proaches enable well adaptability with a few motions but often
sacrifice imitation accuracy, whereas motion-tracking methods
achieve accurate imitation yet require many training motions
and a test-time target motion to adapt. To combine their
strengths, we introduce AdaMimic, a novel motion tracking
algorithm that enables adaptable humanoid control from a sin-
gle reference motion. To reduce data dependence while ensuring
adaptability, our method first creates an augmented dataset
by sparsifying the single reference motion into keyframes and
applying light editing with minimal physical assumptions. A
policy is then initialized by tracking these sparse keyframes to
generate dense intermediate motions, and adapters are subse-
quently trained to adjust tracking speed and refine low-level
actions based on the adjustment, enabling flexible time warping
that further improves imitation accuracy and adaptability. We
validate these significant improvements in our approach in both
simulation and the real-world Unitree G1 humanoid robot in
multiple tasks across a wide range of adaptation conditions
(Fig. 1). Videos and code are available on our project page.

I. INTRODUCTION

Humans are good at acquiring whole-body skills by first
mimicking experts and then adapting to new situations.
For example, a tennis player reproduces the expert stroke
pattern given different ball positions. Humanoid robots are
expected to have a similar capability: adapt from reference
motions to diverse real-world conditions, while accurately
imitating motion patterns. We refer to this ability as adaptable
humanoid control from reference motions.

Approaches to this motion-based adaptable control fall
into two main paradigms. Methods that incorporate reference
motions as prior into reinforcement learning (RL) enable
adaptation beyond the data [1–5], but they often sacrifice
imitation accuracy or require extensive reward tuning. Mo-
tion tracking methods, in contrast, can reproduce reference
motions accurately with lower reward engineering burden [6–
16]. However, their adaptability may be limited by the
dependence on large-scale training motions to cover diverse

https://taohuang13.github.io/adamimic.github.io/
https://github.com/InternRobotics/AdaMimic
https://taohuang13.github.io/adamimic.github.io/

conditions and on possibly unavailable reference motions for
each test-time deployment [17, 18]. How to combine the
strengths of both paradigms—accurate imitation and broad
adaptability—remains an open challenge.

In this work, we take an initial step towards this challenge
by introducing AdaMimic, novel motion tracking algorithm
that enables humanoid robots to adapt from a single ref-
erence motion while accurately preserving motion patterns.
To reduce data dependence while supporting adaptation,
we first generate an augmented dataset by sparsifying the
reference motion into keyframes and editing a few keyframes
with minimal physical assumptions, preserving the essential
local pattern of the reference data. In the first stage, the
policy is trained to track these sparse keyframes, producing
dense intermediate motions that maintain local patterns to the
reference. In a second stage, two adapters are jointly learned:
a phase adapter that modulates motion speed, and a tracking
adapter that compensates for the low-level actions based
on the adjustment. This two-stage design enables flexible
time warping [19, 20], enhancing both imitation accuracy
and adaptability. The resulting policies can be deployed on
hardware without requiring additional reference motions.

Extensive evaluations across diverse tasks and condi-
tions, both in simulation and on the real-world Unitree G1
humanoid robot, demonstrate that AdaMimic outperforms
existing methods. We overview of its real-world performance
in Fig. 1 and summarize our core contributions as follows:
• We introduce AdaMimic, a novel motion tracking algo-

rithm that enables humanoid robots to adapt from a single
reference motion while accurately preserving key patterns.

• We validate the effectiveness of AdaMimic in extensive
simulations, demonstrating significantly improved imita-
tion accuracy and adaptability than existing methods.

• We deploy the trained policies on the real-world Unitree
G1 humanoid robot, showing good performance across
wide adaptation conditions in multiple tasks.

II. RELATED WORK

A. Adaptable Humanoid Control

Adaptation to diverse real-world conditions is crucial in
humanoid control, spanning both locomotion [22–29] and
whole-body manipulation [30–37]. Approaches to these tasks
often rely on sophisticated reward engineering and carefully
designed sim-to-real transfer pipelines. In parallel, another
line of work leverages human motion references to acquire
adaptable whole-body skills [1–5, 15]. Their methods typi-
cally utilize motion data as priors, prioritizing adaptability
over the strict preservation of original motion patterns. In
contrast, our work emphasizes accurate tracking alongside
adaptation.

B. Humanoid Motion Tracking

Motion tracking is proven effective for accurate imitation
of a single reference motion [6–9]. However, its adaptability
is often constrained by the scale of data. Recent advances
address this limitation by training from massive public
datasets [10–18, 38]. While such approaches demonstrate

impressive generalization, they typically require substantial
data curation, rely on teleoperation or pre-collected reference
motions during deployment, and may face challenges in
maintaining tracking accuracy for highly agile behaviors. In
contrast, our work explores how adaptive tracking can be
achieved in agile tasks from only a single reference motion,
without the need for additional pre-collected trajectories.

C. Motion Adaptation

A classical approach to adapting humanoid motions is
motion editing, which can be achieved either through space-
time constraints [19, 39–41] or data-driven generation [42–
44]. While both paradigms enable reusing a single motion
as input, they often face limitations in physical plausibil-
ity caused by over-assumed constraints [41, 45] or under-
assumed dynamics [46], limiting real-world deployment.
This has motivated physics-based approaches that integrate
simulation and reinforcement learning to improve motion
plausibility [47–50]. However, such methods often depend on
large-scale datasets for interpolation or rule-based plausibil-
ity heuristics. Inspired by these two lines of work, we explore
an alternative strategy: selecting and editing keyframes from
a single motion, and then leveraging RL-based tracking to
generate physically plausible in-between motions.

III. BACKGROUND: HUMANOID MOTION TRACKING

We formulate humanoid motion tracking as a goal-
conditioned reinforcement learning (RL) problem within the
framework of a Markov decision process (MDP; [51]). The
objective is to learn a tracking policy πtrack that accurately
reproduces a reference motion q̂.

1) Motion representation: The retargeted reference mo-
tion q̂ is sampled from a reference dataset Dinit

ref , which ini-
tially contains a single motion [6, 7]. Each motion trajectory
consists of global poses q̂global (e.g., position and orientation
of robot bodies) and local poses q̂local (e.g., joint angles). A
normalized phase variable ϕ ∈ [0, 1] parameterizes the whole
reference motion: q̂ϕ =

(
q̂global
ϕ , q̂local

ϕ

)
, which advances

discretely at each timestep k as:

ϕk = ϕk−1 +∆ϕk, ∆ϕk = ∆t / Tq̂, (1)

where ∆t is typically the simulation timestep and Tq̂ is the
duration of the reference motion.

2) Observations and actions: At timestep k, the obser-
vation is defined as ok =

[
q̂ϕk

, qϕk
, θ̇k, ω̇k, ϕk

]
, where

qϕk
denotes current global and local robot poses, θ̇ the

joint velocities, and ω̇k the base angular velocity. The
policy produces a tracking action ak ∼ πtrack(·|ok,∆ϕk)
conditioned on the current observation, the reference motion,
and the fixed phase interval. The action is the target of a PD
controller during a control period.

3) Rewards and objectives: At timestep k, the rewards
rk = (rglobalk , rlocalk) are aggregated from multiple terms
that evaluate different aspects of tracking performance. For
clarity, we group them into two categories: global-level
rewards rglobalk and local-level rewards rlocalk . The former
encourages accurate tracking of global trajectories, while

+

(a) Motion Processing (b) Motion Tracking Policies Training (c) Hardware Deployment

Raw

Data

Retarget

Human Motion SMPL Motion
Reconstruct

𝒟𝑟𝑒𝑓
𝑒𝑑𝑖𝑡

Edit

𝒟𝑟𝑒𝑓
𝑖𝑛𝑖𝑡

Translation ෝ𝒒𝜙
𝑔𝑙𝑜𝑏𝑎𝑙

Motion Phase 𝜙

Motion Phase 𝜙

Sparse Keyframes

Dense Frames

Edited Keyframes

Observation 𝒐𝑘

Fixed Phase

Interval Δ𝜙𝑘

Tracking

Action 𝒂𝑘

Rewards

𝒓𝑘

Dense Local Reward 𝑟𝑘
𝑜𝑐𝑎𝑙

Sparse Global Reward 𝑟𝑘
𝑔𝑙𝑜𝑏𝑎𝑙

𝜙

𝜙

Estimated Returns

Tracking

Critics
Edit

Observation 𝒐𝑘

PD

Controller

50 Hz

500 Hz
Joint

Torques

Tracking

Policy
𝜋𝑡𝑟𝑎𝑐𝑘

Dense

Critic
𝑉𝑡𝑟𝑎𝑐𝑘

𝑑𝑒𝑛𝑠𝑒

Sparse

Critic

𝑉𝑡𝑟𝑎𝑐𝑘
𝑠𝑝𝑎𝑟𝑠𝑒

𝒐𝑘

Δ𝜙𝑘 Tracking

Policy
𝜋𝑡𝑟𝑎𝑐𝑘

Δ Tracking

Action 𝒂𝑘
Δ

Δ Phase

Interval Δ𝜙𝑘
Δ

Δ𝜙𝑘
Adaptive Phase

Interval Δ𝜙𝑘
ada

Δ
Tracking

Adapter
𝜋𝑡𝑟𝑎𝑐𝑘

Δ

Δ
Phase

Adapter
𝜋𝑝ℎ𝑎𝑠𝑒

Δ

Δ Tracking

Critics 𝑽𝑡𝑟𝑎𝑐𝑘
Δ

Δ Phase

Critics 𝑽𝑝ℎ𝑎𝑠𝑒
Δ

Adaptive

Tracking

Action 𝒂𝑘
𝑎𝑑𝑎

Robot

IMU

Joints

Information

5-Step

Histories

Lidar

Odometry

Action

𝒂𝑘
𝑎𝑑𝑎

Stage 2: Δ-Adaptive Phase IntervalStage 1: Fixed Phase Interval

𝒟𝑟𝑒𝑓
𝑒𝑑𝑖𝑡

𝒟𝑟𝑒𝑓
𝑖𝑛𝑖𝑡

Estimated

Returns

Δ𝜙𝑘𝒂𝑘
𝜋𝑡𝑟𝑎𝑐𝑘

𝜋𝑡𝑟𝑎𝑐𝑘
Δ

𝜋𝑝ℎ𝑎𝑠𝑒
Δ

Fig. 2: Method overview. (a) Human motions are reconstructed into SMPL motions via GVHMR [21] and retargeted to the humanoid robot. Sparse
keyframes are then selected and edited to form an augmented dataset for adaptive tracking. (b) Based on this dataset, AdaMimic first trains a tracking
policy with fixed phase intervals and double critics for sparse global tracking and dense local tracking rewards, followed by phase and tracking adapters
that enable effective time warping for improved tracking performance. (c) The resulting policies can be directly deployed on the real Unitree G1 robot.

the latter focuses on matching local motion patterns. The
tracking policy πtrack is then optimized to maximize the
expected return:

max
πtrack

Eπtrack

[∑
k=0

γk (w · rk)

∣∣∣∣∣ ∆ϕk, q̂ ∼ Dinit
ref

]
, (2)

where w denotes the weighting between the two reward
groups, and γ ∈ [0, 1) is the discount factor.

IV. METHOD: ADAPTIVE MOTION TRACKING

A. Problem Reformulation

The key insight of adaptive motion tracking is to extend
the standard motion tracking problem by allowing variations
in global trajectories while strictly preserving the local
motion pattern of a given motion. Formally, starting from an
initial reference dataset Dinit

ref = {q̂} that contains a single
motion trajectory, we assume access to an augmented dataset
Dedit

ref = {q̂edit
i }Mi=0. Each edited motion q̂edit

i shares the
same local joint trajectories as the original motion:

q̂edit, local
i,ϕk

= q̂local
ϕk

, ∀ q̂edit
i ∈ Dedit

ref , ∀ϕk ∈ [0, 1], (3)

while the global component q̂edit, global
ϕk

may vary to reflect
different displacements or base translations. For clarity, we
interchangeably refer to q̂edit

i and q̂ without causing ambi-
guity in the rest of the paper.

The tracking policy πtrack is then optimized to reproduce
motions sampled from Dedit

ref :

max
πtrack

Eπtrack

[∑
k=0

γk (w · rk)

∣∣∣∣∣ ∆ϕk, q̂ ∼ Dedit
ref

]
. (4)

This formulation abstracts away the specific mechanism for
constructing Dedit

ref , which will be discussed below. Adapta-
tion is achieved by specifying a different reference motion.

B. Keyframing and Editing: Dinit
ref → Dedit

ref

A classical approach to construct Dedit
ref is to sparsely

edit keyframes and interpolate the intermediate frames under
trajectory-level consistency constraints [19, 39], denoted
as Drule

ref . However, such optimization-based methods may
yield physically implausible motions, which may impede

0.2 0.1 0.0 0.1 0.2
Global y Tracking Error (m)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Gl
ob

al
 y

 Tr
ac

ki
ng

 E
rro

r (
m

)

Zero Error

DeepMimic-Adapt

0.2 0.1 0.0 0.1 0.2
Global y Tracking Error (m)

AdaMimic-Stage1

0.2 0.1 0.0 0.1 0.2
Global y Tracking Error (m)

AdaMimic (ours)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ju
m

pi
ng

 D
ist

an
ce

0.55 0.60 0.65 0.70
Motion Phase

20

40

60

80

100
Lo

ca
l T

ra
ck

in
g

Er
ro

r (
m

)

Jumping
 Phase

0.55 0.60 0.65 0.70
Motion Phase

0.55 0.60 0.65 0.70
Motion Phase

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ju
m

pi
ng

 D
ist

an
ce

Fig. 3: Motivations of keyframing and adapters. (Top) Global tracking
errors at the landing moment of far jumping indicate that AdaMimic outper-
forms baselines—DeepMimic-Adapt, which augments motions with rules,
and AdaMimic-Stage1, which tracks at a fixed speed—by incorporating
sparse keyframes and adaptive time warping to improve physical plausibility.
(Bottom) Local tracking errors further verify the improvements.

hardware deployment (see Fig. 7), due to the absence of
dynamics [41, 45]. Inspired by these works, we also adopt a
keyframe-based editing scheme to preserve the global motion
structure, but go beyond their limitations by using RL to
generate more dynamically plausible intermediate frames,
drawing from the ideas of [47, 48, 52].

Concretely, we select N keyframes, some of which are
associated with semantic contexts (e.g., start, take-off, and
landing in far jumping), and denote their phases as Φkey =
{ϕkey0 , ϕkey1 , . . . , ϕkeyN−1}. A subset Φedit ⊂ Φkey is then
chosen for editing, with the principle of introducing as few
physical assumptions as possible. For each edited keyframe
at phase ϕk ∈ Φedit, we apply a transformation to its global
pose based on a variable ψi (e.g., jumping distance):

q̂edit, global
i,ϕk

= fedit
(
q̂global
ϕk

, ψi

)
, ∀ϕk ∈ Φedit, (5)

while keeping the local joint path unchanged. This editing
function fedit is task-dependent; for instance, in far jumping,
it may translate post-landing frames forward or backward.
The resulting set of edited keyframes forms Dedit

ref , which
serves as reference motions for adaptive motion tracking.
The whole editing process is illustrated in Fig. 4.

D
en

se
F

ra
m

es
S

p
ar

se
K

ey
fr

am
es

Down Jump

Hard Adaptation RangeEasy Adaptation RangeOriginal Keyframe d d Edited KeyframeKeyframe EditingStart End

Triple JumpHigh JumpFar Jump

Near

Edit

Far

Edit

Badminton HitTennis Hit

Fig. 4: (Top) Task visualization: Five representative motions used as input for humanoid retargeting. (Bottom) Keyframing and editing: Sparse keyframes
are extracted from each motion, and few selected ones are further edited to enable adaptation. Colors denote adaptation difficulty relative to the original
keyframe (gray): blue indicates easy adaptation cases, while red indicates hard adaptation cases. The adaptation ranges are presented in Table I.

TABLE I: Adaptation ranges of seven tasks during training and testing.

Task Raw
Data

Simulation Train/Test (m) Hardware Test (m)
Easy Hard Easy Hard.

Far Jump → 1.1m [0.7, 1.6] [0.2, 0.7] ∪ {0.7, 1.0} {1.2, 0.4}
High Jump ↑ 0.2m [0.1, 0.35] [0.05, 0.1] ∪ [0.35, 0.6] {0.1, 0.2} {0.3, 0.4}
Triple Jump → 2.4m [1.65, 3.15] [1.2, 1.65] ∪ [3.15, 4.2] {2.1, 2.7} {1.5, 3.3}
Step Jump ↕ 0.2m [0.05, 0.25] [0.25, 0.5] {0.2} {0.3}
Tennis → 1.0m [0.8, 1.2] [1.2, 1.7] {0.8, 1.2} {1.4, 1.6}
Badminton ↘ 1.3m [1.3, 1.9] [1.9, 2.5] {1.3, 1.6} {1.9, 2.2}

Remark: The current scope of tasks we consider is limited
to those where the keyframes Φkey and editing function
fedit can be defined in a relatively straightforward and task-
specific way. Extending to more tasks requires developing
more general mechanisms for constructing Φkey and fedit,
which we leave as an important direction for future work.

C. Stage 1: Motion Tracking with Fixed Phase Interval

Given the edited motions, we first employ existing motion-
tracking algorithms [6, 7] to train a tracking policy πtrack
using a fixed phase interval ∆ϕ. This stage aims to provide
the agent with an initial capability of imitating the edited
keyframe motions under a simple and stable training setup.

1) Sparse global reward: To ensure global-space motion
alignment, we design a sparse global reward function:

rglobalk = Rglobal
track (qglobal

ϕk+1
, q̂ global

ϕk+1
) · 1(ϕk+1 ∈ Φkey), (6)

which is only activated when the current phase matches
one of the keyframe phases Φkey. This design avoids over-
constraining the motion in global space and instead enforces
accurate alignment only at sparse but crucial keyframes.
To stabilize training under this sparse signal, we follow
prior works [27, 47] and introduce a separate value func-
tion V sparse

track to better estimate the return from such sparse
rewards.

2) Dense local reward: In addition, we design a dense lo-
cal reward to preserve the local joint-space consistency with
the reference motion. This reward encourages the reproduced
motion to mimic fine-grained patterns from the references:

rlocalk = Rlocal
track(q

local
ϕk+1

, q̂local
ϕk+1

), (7)

A separate value function V local
track is employed to estimate

the return induced by this dense signal, complementing the
sparse global reward. The two value functions Vtrack =
(V sparse

track , V dense
track) are optimized separately following [53,

54]. All reward functions are listed in Table II.

TABLE II: Reward functions. The tracking rewards largely follow [7]
and are categorized into sparse and dense reward groups, with additional
regularization rewards to ensure hardware deployability.

Term Weight Term Weight
Sparse Reward → V sparse

Global body position 10 Global body rotation 5
Global feet position 10 Termination -200

Dense Reward → V dense

Local body position 0.75 Local body rotation 0.5
Local DoF position 0.75 Feet orientation -5e-2

DoF acceleration -2.5e-7 DoF velocity -5e-4

Action rate -5e -1 Smoothness -1e-2

Torques -1e -6 Torque limits 5
DoF position limits -10 DoF velocity limits -5

D. Stage 2: Adapters Learning with Adaptive Phase Interval
While stage 1 provides a good policy initialization, its

adaptation ability to edited motions remains limited. We posit
that the fixed phase interval is a key limitation. As illustrated
in Fig. 3, this rigidity results in substantial global and local
errors, especially when the required adaptation is large. In
practice, such errors may manifest as unnatural pacing or
artifacts such as unstable landings.

1) Phase adapter π∆
phase: This motivates our design of

the phase adapter π∆
phase. It is inspired by the time-warping

mechanism in classical motion path editing works, where
motions are temporally re-parameterized to preserve natural-
ness and pacing under spatial edits [20, 48, 52]. Formally,
the adapter takes the observation as input and outputs a delta
phase interval ∆ϕ∆k , which is added to the base interval ∆ϕk
to obtain an adaptive phase interval ∆ϕadak :

∆ϕadak = ∆ϕk +∆ϕ∆k , ∆ϕ∆k ∼ π∆
phase(·|ok). (8)

2) Tracking adapter π∆
track: Given the adaptive phase

interval, we need a tracking adapter π∆
track to compensate for

the tracking action to track the next-step reference motion:

aada
k = ak +∆ϕ∆k · a∆

k , a∆
k ∼ π∆

track(·|ok,∆ϕ
ada
k), (9)

where the scaling by ∆ϕ∆k ensures that when the delta phase
interval is zero, the adaptive action degenerates to the original
tracking action. This design eases optimization empirically.

3) Optimization: During training, the two adapters π∆ =
(π∆

phase, π
∆
track) are paired with separate double critics V ∆ =

(V ∆
phase,V

∆
track) to estimate the sparse and dense rewards

described in Section IV-C. The overall objective is

max
π∆

Eπ∆

[∑
k=0

γk (w · rk)

∣∣∣∣∣ ∆ϕk, q̂ ∼ Dedit
ref

]
. (10)

TABLE III: Main simulation results. AdaMimic is compared against multiple baselines adapted to our problem setting and its ablated versions in a fair
setup. Results report mean and standard deviation over three evaluations, each comprising more than ten thousand simulation episodes.

Comparison Methods Components Easy Adaptation Hard Adaptation Overall
(a) Baselines rglobal Dref ∆ϕada Success ↑ Edense

l−bpe ↓ Esparse
g−bpe ↓ Edense

smth ↓ Success ↑ Edense
l−bpe ↓ Esparse

g−bpe ↓ Edense
smth ↓ Success ↑ Edense

l−bpe ↓ Esparse
g−bpe ↓ Edense

smth ↓
AMP-Style Sparse Dinit

ref
• 95.5%±0.1% 44.5±0.0 211.2±0.1 19.1±0.3 70.3%±0.0% 44.5±0.0 247.9±0.1 22.3±0.3 82.7%±0.0% 44.5±0.0 229.8±0.2 20.7±0.3

AMP-Mimic Sparse Dinit
ref

• 96.8%±0.0% 35.8±0.0 164.4±0.2 19.9±0.4 62.3%±0.0% 35.7±0.0 190.3±0.1 21.3±0.4 79.1%±0.0% 35.7±0.0 177.9±0.1 20.6±0.4

DeepMimic-NoAdapt Dense Dinit
ref

• 92.6%±0.0% 36.6±0.0 205.1±0.1 17.6±0.6 81.0%±0.0% 36.7±0.0 484.6±0.2 19.4±0.4 86.8%±0.0% 36.6±0.0 351.8±0.2 18.6±0.5

DeepMimic-Adapt Dense Drule
ref

• 95.8%±0.0% 33.3±0.0 123.6±0.0 15.1±0.3 74.8%±0.0% 33.3±0.0 142.8±0.1 16.7±0.3 85.1%±0.0% 33.3±0.0 133.5±0.1 15.9±0.3

DeepMimic-Adapt-∆ϕada Dense Drule
ref ! 93.7%±0.0% 38.7±0.0 170.9±0.0 17.2±0.5 70.0%±0.0% 38.7±0.0 194.2±0.0 17.8±0.8 81.4%±0.1% 38.8±0.0 182.8±0.0 17.4±0.5

AdaMimic-Dense Dense Drule
ref ! 98.4%±0.0% 36.3±0.0 107.6±0.0 17.6±0.1 78.0%±0.0% 36.2±0.0 124.7±0.0 20.0±0.1 88.0%±0.0% 36.2±0.0 115.0±0.0 18.8±0.1

AdaMimic (ours) Sparse Dedit
ref ! 99.6%±0.0% 30.3±0.0 87.9±0.0 16.0±0.2 74.2%±0.0% 30.3±0.0 99.8±0.1 17.3±0.2 86.8%±0.0% 30.3±0.0 94.8±0.0 16.6±0.2

(b) Ablations Stage 2 Freeze ∆ϕada Success ↑ Edense
l−bpe ↓ Esparse

g−bpe ↓ Edense
smth ↓ Success ↑ Edense

l−bpe ↓ Esparse
g−bpe ↓ Edense

smth ↓ Success ↑ Edense
l−bpe ↓ Esparse

g−bpe ↓ Edense
smth ↓

AdaMimic-Stage1 • • • 96.7%±0.0% 43.4±0.0 188.1±0.0 17.8±0.4 75.2%±0.0% 43.4±0.0 211.8±0.1 18.7±0.4 85.7%±0.0% 43.4±0.0 200.4±0.1 18.2±0.4

AdaMimic-Stage1-∆ϕada • • ! 92.7%±0.0% 45.3±0.0 195.0±0.1 19.8±0.3 83.2%±0.0% 45.3±0.0 219.8±0.0 20.5±0.2 88.0%±0.0% 45.3±0.0 208.1±0.0 20.2±0.2

AdaMimic-NoFreeze ! • ! 85.0%±0.0% 44.8±0.0 203.4±0.0 25.8±0.1 71.2%±0.0% 43.6±0.0 224.2±0.0 26.9±0.1 77.8%±0.0% 44.1±0.1 214.1±0.1 26.4±0.1

AdaMimic (default) ! ! ! 99.6%±0.0% 30.3±0.0 87.9±0.0 16.0±0.2 74.2%±0.0% 30.3±0.0 99.8±0.1 17.3±0.2 86.8%±0.0% 30.3±0.0 94.8±0.0 16.6±0.2

0

10

20

30

40

50

Easy - Edense
l bpe (mm)

0

50

100

150

Easy - Esparse
g bpe (mm)

0

5

10

15

Easy - Edense
smth (rad/s2)

0

10

20

30

40

50

Hard - Edense
l bpe (mm)

0

50

100

150

200
Hard - Esparse

g bpe (mm)

0

5

10

15

20

Hard - Edense
smth (rad/s2)

AdaMimic (ours) DeepMimic-Adapt UniTracker UniTracker-Adapt

Fig. 5: Baselines trained with large-scale motion data. Across five tasks,
AdaMimic achieves better performance than UniTracker [18] and its variant
adapted with the rule-based motions from DeepMimic-Adapt. Besides, the
results indicate that additional motion data does not provide UniTracker
with obvious gains in specialization over DeepMimic-Adapt.

Finally, the resulting adaptive action aada
k is then applied to

control the robot to perform adaptive motion tracking.

E. Real-World Deployment

We directly deploy the trained policies on the Unitree 29-
DoFs G1 humanoid robot. For hardware stability, the waist
pitch and roll joints are locked. To enhance robustness, the
observation is augmented with a 5-step history. Global local-
ization is realized by lidar odometry through FastLIO [55].
The policy, low-level control, and odometry modules operate
at 50Hz, 500Hz, and 10Hz, respectively.

F. Implementation Details

The human videos are translated into SMPL motions using
GVHMR [21] for retargeting. Training is conducted in the
Isaac Gym simulator [56] with 4096 parallel environments,
employing PPO [57] as the RL algorithm. Both the policy
and value functions are parameterized as 3-layer MLPs. Each
episode is initialized from a randomly sampled keyframe [6].
To improve stability for real-world deployment, we adopt
L2C2 regularization [54, 58]. The reward weight vector w
is set to (1, 0.5) for the sparse and dense reward groups,
respectively. The adaptive phase interval is defined as ∆ϕ∆k ∈
[−0.75∆ϕk, ϕk]. Finally, PD controllers are configured fol-
lowing [54] for improved simulation performance, while em-

0.50 0.53 0.55 0.58 0.60 0.62 0.65 0.68
Motion Phase

4

2

0

2

4

6

8

De
lta

 P
ha

se
 In

te
rv

al

×10 4

Jumping
 Phase

Distance
0.2
0.55
0.9
1.25
1.7

0.50 0.53 0.55 0.58 0.60 0.62 0.65 0.68
Motion Phase

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

De
lta

 T
ra

ck
in

g
Ac

tio
n

a

Distance
0.2
0.55
0.9
1.25
1.7

0 1 2 3 4 5
Time (s)

0.50

0.55

0.60

0.65

0.70

0.75
Ba

se
 H

ei
gh

t

AdaMimic-Stage1

Distance
1.6
1.0
0.4

0 1 2 3 4 5 6 7 8
Time (s)

Ba
se

 H
ei

gh
t

AdaMimic (default)

Distance
1.6
1.0
0.4

Fig. 6: Effectiveness of adapters. (Top) The phase interval and tracking ac-
tion adapt to different far-jump distances, where longer distances correspond
to extended airtime and larger action compensation, while shorter distances
lead to reduced adjustments. (Bottom) With adapters, the policy performs
effective time warping, adjusting motion speed to improve adaptation.

ploying configurations from [3] during hardware deployment
to improve safety and smoothness.

V. EXPERIMENTS

A. Experimental Setup

1) Tasks: We record seven human videos as the evaluation
task set, including five various jumping skills and two ball-
hitting skills. These tasks are considered agile and difficult
enough. Some representative tasks are visualized in Fig. 4
and their adaptation ranges are presented in Table I.

2) Comparison methods: We adapt the following base-
lines to our problem formulation:
• Motion as priors: Adversarial motion priors (AMP-

Style; [1]), which use motions as a style regularizer com-
bined with sparse keyframe tracking as the task reward.
Its variant, AMP-Mimic, additionally conditions on phase
information to better mimic the reference motion.

• Motion tracking from target data: DeepMimic [6],
including (i) DeepMimic-NoAdapt, which tracks the orig-
inal motion Dinit

ref , and (ii) DeepMimic-Adapt(-∆ϕada),
which tracks the reference motions Drule

ref generated with
a classical linear motion editing method [52].

• Motion tracking from prior motions: UniTracker [18],
trained on large-scale motion datasets, and its adapted
variant (UniTracker-Adapt), fine-tuned on Drule

ref .

TABLE IV: Main hardware results. In the absence of accurate odometry, we report success rate, local joint tracking error, and smoothness to quantitatively
compare AdaMimic with three representative baselines. The results indicate that AdaMimic achieves strong hardware deployability, particularly in challenging
adaptation cases, benefiting from the proposed tracking objectives, motion editing, and adapters. ’/’ indicates a complete failure in that case.

Easy Adaptation Far Jump High Jump Triple Jump Tennis Hit Badminton Hit
Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓

AMP-Style 4/6 35.2±0.2 42.8±2.2 5/6 34.8±0.7 37.4±7.9 4/6 32.6±0.9 41.7±3.5 5/6 31.7±0.5 52.9±4.5 0/6 / /
DeepMimic-Adapt 4/6 34.4±0.1 41.5±1.0 1/6 32.8±0.0 65.6±0.0 6/6 34.0±0.9 49.0±3.3 6/6 32.1±0.1 36.5±1.0 6/6 30.4±0.2 50.2±2.2

AdaMimic-Stage1 6/6 33.8±0.2 43.7±2.8 6/6 32.7±0.1 35.7±1.5 6/6 32.6±0.6 54.4±6.3 6/6 31.6±0.1 33.9±0.9 5/6 28.6±0.2 44.5±3.5

AdaMimic (our) 5/6 35.2±0.7 38.7±1.4 6/6 30.5±0.3 28.7±3.4 6/6 30.7±0.3 31.3±6.7 6/6 30.7±0.2 31.9±1.8 6/6 28.7±0.1 36.4±2.0

Hard Adaptation Far Jump High Jump Triple Jump Tennis Hit Badminton Hit
Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓ Succ.↑ Edense

l−dof ↓ Edense
smth ↓

AMP-Style 3/6 35.0±0.0 31.8±1.1 0/6 / / 3/6 33.7±0.2 42.7±8.9 4/6 31.6±0.5 66.4±7.3 0/6 / /
DeepMimic-Adapt 3/6 34.3±0.1 46.6±4.6 0/6 / / 6/6 33.8±0.1 47.7±2.1 5/6 31.1±0.1 49.5±4.3 6/6 30.8±0.1 55.3±1.7

AdaMimic-Stage1 2/6 34.1±0.3 34.3±5.4 3/6 32.5±0.1 37.1±3.9 6/6 32.3±0.1 38.3±2.3 6/6 31.9±0.1 40.9±2.2 5/6 29.1±0.1 50.9±2.7

AdaMimic (our) 5/6 35.3±0.5 46.2±7.7 5/6 31.3±0.5 28.6±4.2 6/6 31.5±1.9 31.7±4.6 6/6 30.8±0.1 42.9±1.7 6/6 28.9±0.1 44.5±2.0

Fig. 7: Snapshots of real robot motions. Four representative groups of hardware demonstrations highlight the differences between AdaMimic and baseline
methods: (1) DeepMimic-Adapt is constrained by physically implausible edited motions used for dense per-frame tracking, (2) AMP-Style exhibits jerky
motions and limited imitation accuracy, and (3) AdaMimic-Stage1 yields hardware-unstable policies without the proposed adapters.

For fair comparison, we use the same reward functions and
observation spaces across all methods, except for UniTracker,
which cannot be directly transferred due to its special obser-
vations. For this baseline, we use its official implementation.

3) Evaluation metrics: We evaluate each method using
four metrics. (1) Success rate considers an episode failed if
the average body distance error exceeds 1m at any keyframe
phase; unlike prior work, we emphasize keyframes and
adopt a looser criterion under the sparse tracking setup.
(2) Tracking error measures body distance error in two
forms: the sparse global error (Esparse

g−bpe, mm), averaged in the
world frame at keyframe phases to assess global mimicking
accuracy, and the dense local error (Edense

l−bpe, mm), averaged
in the root frame over all timesteps to assess local accuracy.
(3) Smoothness (Edense

smth , rad/s2) is defined as the average
joint acceleration over the entire episode. Results are reported
as averages over three evaluation runs, each covering more
than ten thousand episodes in IsaacGym.

B. Main Simulation Results

AdaMimic exhibit both great adaptation and tracking
precision across all adaptation cases, as shown in Table III.
Comparison with AMP. The AMP-Style baseline demon-
strates moderate adaptability but limited imitation accuracy,
primarily due to the absence of phase information in its orig-

inal formulation. Incorporating phase information alleviates
this issue and yields improvements in both adaptability and
precision. Nonetheless, the resulting motions remain jerky
because of weak motion constraints, and overall performance
still falls short of other adaptable methods and AdaMimic.
Comparison with DeepMimic. As expected, DeepMimic-
noAdapt fails to adapt due to relying on a single reference
motion. Its adaptable variants, DeepMimic-Adapt(-∆ϕada),
achieve notable performance gains, highlighting the effec-
tiveness and generality of our formulation. However, their
tracking performance degrades substantially from easy to
hard adaptation scenarios (see also example in Fig. 7),
reflecting limitations imposed by the underlying motion path
editing. In contrast, our method avoids such restrictive edit-
ing assumptions and instead leverages RL with keyframing
to produce more physically plausible motions.
Comparison with UniTracker. As shown in Fig. 5, we
observe that: (1) the pre-trained model, despite being trained
on massive motion data, struggles to perform agile motions;
(2) finetuning with Drule

ref yields some gains but does not
surpass DeepMimic-Adapt trained from scratch; and (3) both
versions overall underperform AdaMimic. These findings
further suggest that universal trackers could be made less
dependent on pre-defined data during deployment by incor-
porating a more physically plausible motion editing module.

C. Analyses of Key Designs

Effectiveness of adapters. Table III and Fig. 3 quantify the
benefits of adapters, while Fig. 6 reveals their mechanism.
The top panel shows that phase intervals and delta action
scale with jump distance: longer jumps lead to extended air-
time and larger compensation, whereas shorter jumps require
smaller adjustments, mostly concentrated around landing.
Together, this decoupling of timing and correction enables
motion speed adaptation without altering the motion pattern,
resulting in lower tracking error, smoother landings, and
higher success rates, especially in hard adaptation cases.
Keyframe editing outperforms per-frame editing. We
observe that keyframe-based AdaMimic consistently outper-
forms its per-frame counterpart, AdaMimic-Dense, indicating
the advantage of sparse keyframe selection for adaptation. In-
terestingly, the trend is reversed when comparing AdaMimic-
Stage1 with DeepMimic-Adapt, suggesting that the combi-
nation of keyframing and adapters is crucial for achieving
both precise tracking and great adaptation.
Two-stage training is necessary. Our motivation for the
two-stage design arises from the observation that training
with adaptive phase intervals (AdaMimic-Stage1-∆ϕada) but
inference with fixed intervals can even degrade perfor-
mance compared to training with fixed intervals (AdaMimic-
Stage1). We hypothesize that this is due to increased op-
timization difficulty incurred by the varied phase interval,
which can be substantially mitigated by our two-stage design.
Freezing the tracking policy is important. Finetuning
the tracking policy during the second stage (AdaMimic-
NoFreeze) noticeably degrades both smoothness and tracking
accuracy. We attribute this degradation to increased optimiza-
tion difficulty when updating the policy alongside adapters.

D. Main Hardware Results

We present snapshots of real robot motions to com-
pare AdaMimic with representative baselines in Fig. 7.
DeepMimic-Adapt fails in extreme cases, such as high
jumps, because the rule-based augmented motions are phys-
ically inconsistent and cannot be reliably executed on hard-
ware. AMP-Style shows noticeable instability in dynamic
tasks like tennis hitting: motions are jerky, and forceful
strikes lead to poor balance and uncoordinated execution.
AdaMimic-Stage1, lacking the proposed adapters, exhibits
large sim-to-real gaps; in particular, the ankle joints become
highly unstable during forceful motions, reflecting inade-
quate temporal and action adaptation.

In contrast, AdaMimic combines sparse keyframes with
phase and tracking adapters, enabling the policy to adjust
motion timing and per-step actions while maintaining origi-
nal motion patterns. This results in physically plausible and
robust execution across all tasks. Quantitatively, as shown
in Table IV, AdaMimic consistently achieves high success
rates, reduced local joint errors, and smoother motions in
both easy and hard adaptation scenarios, highlighting the
effectiveness and generality of our method on the real robot.

VI. CONCLUSION

We have presented AdaMimic, a novel motion tracking
framework for adaptable humanoid control from a single
reference motion. Our framework addresses the limitations
of prior methods, which either sacrifice tracking accuracy
for adaptation or require large-scale reference motions for
each adaptation condition. By leveraging augmented sparse
keyframes and a two-stage training strategy with phase
and tracking adapters, AdaMimic enables accurate imitation
while extending adaptability to diverse tasks and conditions.
Experimental results on the Unitree G1 humanoid robot
demonstrate that our controllers achieve adaptable motions
across many tasks, validating both the effectiveness and gen-
erality of our framework. Looking forward, AdaMimic holds
promise for extending beyond the demonstrated scenarios
to more complex and interactive whole-body skills, such as
perceptive and professional ball games.

VII. LIMITATIONS AND FUTURE DIRECTIONS

We acknowledge several key limitations that are consid-
ered valuable to be addressed in the future.
Wide task scope. Our method currently focuses on tasks
with clear parametric forms (e.g., jump or strike distances),
while many skills lack such representations. Extending to
less structured tasks could broaden its applicability.
General motion editing mechanism. Keyframe selection
and editing are manually specified, which restricts scalability.
Developing automatic editing mechanisms could make the
framework more general and efficient.
Utilization of massive motion data. Universal trackers
trained on large datasets still underperform, even with fine-
tuning. Better strategies to exploit massive motion data are
valuable for stronger adaptation.
Adaptation for interactive tasks. Our framework executes
motions without environment feedback, limiting interactivity.
Incorporating perception will enable adaptive and responsive
behaviors in interactive tasks such as ball games.

REFERENCES

[1] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp: Ad-
versarial motion priors for stylized physics-based character control,”
Transactions on Graphics (TOG), 2021.

[2] L. Ma, Z. Meng, T. Liu, Y. Li, R. Song, W. Zhang, and S. Huang,
“Styleloco: Generative adversarial distillation for natural humanoid
robot locomotion,” ArXiv, vol. abs/2503.15082, 2025.

[3] Q. Liao, T. E. Truong, X. Huang, G. Tevet, K. Sreenath, and C. K. Liu,
“Beyondmimic: From motion tracking to versatile humanoid control
via guided diffusion,” ArXiv, vol. abs/2508.08241, 2025.

[4] H. Xue, X. Huang, D. Niu, Q. Liao, T. Kragerud, J. T. Gravdahl,
X. B. Peng, G. Shi, T. Darrell, K. Screenath, and S. S. Sastry,
“Leverb: Humanoid whole-body control with latent vision-language
instruction,” ArXiv, vol. abs/2506.13751, 2025.

[5] A. Allshire, H. Choi, J. Zhang, D. McAllister, A. Zhang, C. M.
Kim, T. Darrell, P. Abbeel, J. Malik, and A. Kanazawa, “Visual
imitation enables contextual humanoid control,” in Conference on
Robot Learning (CoRL), 2025.

[6] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” Transactions on Graphics (TOG), 2018.

[7] T. He, J. Gao, W. Xiao, Y. Zhang, Z. Wang, J. Wang, Z. Luo, G. He,
N. Sobanbabu, C. Pan, Z. Yi, G. Qu, K. Kitani, J. Hodgins, L. J. Fan,
Y. Zhu, C. Liu, and G. Shi, “Asap: Aligning simulation and real-world

physics for learning agile humanoid whole-body skills,” in Robotics
Science and Systems (RSS), 2025.

[8] W. Xie, J. Han, J. Zheng, H. Li, X. Liu, J. Shi, W. Zhang, C. Bai, and
X. Li, “Kungfubot: Physics-based humanoid whole-body control for
learning highly-dynamic skills,” ArXiv, vol. abs/2506.12851, 2025.

[9] T. Zhang, B. Zheng, R. Nai, Y. Hu, Y.-J. Wang, G. Chen, F. Lin, J. Li,
C. Hong, K. Sreenath, and Y. Gao, “Hub: Learning extreme humanoid
balance,” in Conference on Robot Learning (CoRL), 2025.

[10] T. He, Z. Luo, X. He, W. Xiao, C. Zhang, W. Zhang, K. Kitani,
C. Liu, and G. Shi, “Omnih2o: Universal and dexterous human-to-
humanoid whole-body teleoperation and learning,” in Conference on
Robot Learning (CoRL), 2024.

[11] T. He, W. Xiao, T. Lin, Z. Luo, Z. Xu, Z. Jiang, J. Kautz, C. Liu,
G. Shi, X. Wang, L. Fan, and Y. Zhu, “Hover: Versatile neural whole-
body controller for humanoid robots,” in International Conference on
Robotics and Automation (ICRA), 2025.

[12] J. Shi, X. Liu, D. Wang, O. Lu, S. Schwertfeger, F. Sun, C. Bai, and
X. Li, “Adversarial locomotion and motion imitation for humanoid
policy learning,” vol. abs/2504.14305, 2025.

[13] Y. Xue, W. Dong, M. Liu, W. Zhang, and J. Pang, “A unified and
general humanoid whole-body controller for versatile locomotion,” in
Robotics Science and Systems (RSS), 2025.

[14] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang, “Expressive
whole-body control for humanoid robots,” in Robotics Science and
Systems (RSS), 2024.

[15] Z. Zhuang and H. Zhao, “Embrace collisions: Humanoid shadowing
for deployable contact-agnostics motions,” in Conference on Robot
Learning (CoRL), 2025.

[16] Y. Li, Y. Lin, J. Cui, T. Liu, W. Liang, Y. Zhu, and S. Huang,
“Clone: Closed-loop whole-body humanoid teleoperation for long-
horizon tasks,” in Conference on Robot Learning (CoRL), 2025.

[17] Z. Chen, M. Ji, X. Cheng, X. Peng, X. B. Peng, and X. Wang, “Gmt:
General motion tracking for humanoid whole-body control,” ArXiv,
vol. abs/2506.14770, 2025.

[18] K. Yin, W. Zeng, K. Fan, Z. Wang, Q. Zhang, Z. Tian, J. Wang, J. Pang,
and W. Zhang, “Unitracker: Learning universal whole-body motion
tracker for humanoid robots,” ArXiv, vol. abs/2507.07356, 2025.

[19] A. Witkin and Z. Popović, “Motion warping,” in SIGGRAPH. ACM,
1995.

[20] E. Hsu, M. da Silva, and J. Popović, “Guided time warping for motion
editing,” in SIGGRAPH, 2007.

[21] Z. Shen, H. Pi, Y. Xia, Z. Cen, S. Peng, Z. Hu, H. Bao, R. Hu, and
X. Zhou, “World-grounded human motion recovery via gravity-view
coordinates,” in SIGGRAPH Asia, 2024.

[22] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and
K. Sreenath, “Real-world humanoid locomotion with reinforcement
learning,” Science Robotics, 2024.

[23] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Reinforcement learning for versatile, dynamic, and robust bipedal
locomotion control,” The International Journal of Robotics Research
(IJRR), 2024.

[24] Z. Zhuang, S. Yao, and H. Zhao, “Humanoid parkour learning,” in
Conference on Robot Learning (CoRL), 2024.

[25] J. Long, J. Ren, M. Shi, Z. Wang, T. Huang, P. Luo, and J. Pang,
“Learning humanoid locomotion with perceptive internal model,” in
International Conference on Robotics and Automation (ICRA), 2025.

[26] Y. Li, Y. Zhang, W. Xiao, C. Pan, H. Weng, G. He, T. He, and
G. Shi, “Hold my beer: Learning gentle humanoid locomotion and
end-effector stabilization control,” in Conference on Robot Learning
(CoRL), 2025.

[27] H. Wang, Z. Wang, J. Ren, Q. Ben, T. Huang, W. Zhang, and
J. Pang, “Beamdojo: Learning agile humanoid locomotion on sparse
footholds,” in Robotics Science and Systems (RSS), 2025.

[28] J. He, C. Zhang, F. Jenelten, R. Grandia, M. Bächer, and M. Hutter,
“Attention-based map encoding for learning generalized legged loco-
motion,” Science Robotics, 2025.

[29] X. Gu, Y.-J. Wang, X. Zhu, C. Shi, Y. Guo, Y. Liu, and J. Chen, “Ad-
vancing humanoid locomotion: Mastering challenging terrains with
denoising world model learning,” in Robotics Science and Systems
(RSS), 2024.

[30] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” in Conference on
Robot Learning (CoRL), 2024.

[31] T. Lin, K. Sachdev, L. Fan, J. Malik, and Y. Zhu, “Sim-to-real
reinforcement learning for vision-based dexterous manipulation on

humanoids,” in Conference on Robot Learning (CoRL), 2025.
[32] C. Lu, X. Cheng, J. Li, S. Yang, M. Ji, C. Yuan, G. Yang, S. Yi, and

X. Wang, “Mobile-television: Predictive motion priors for humanoid
whole-body control,” in International Conference on Robotics and
Automation (ICRA), 2025.

[33] J. Li, X. Cheng, T. Huang, S. Yang, R.-Z. Qiu, and X. Wang, “Amo:
Adaptive motion optimization for hyper-dexterous humanoid whole-
body control,” in Robotics Science and Systems (RSS), 2025.

[34] Y. Zhang, Y. Yuan, P. Gurunath, T. He, S. Omidshafiei, A. akbar Agha-
mohammadi, M. Vazquez-Chanlatte, L. Pedersen, and G. Shi, “Falcon:
Learning force-adaptive humanoid loco-manipulation,” in Conference
on Robot Learning (CoRL), 2025.

[35] Q. Ben, F. Jia, J. Zeng, J. Dong, D. Lin, and J. Pang, “Homie:
Humanoid loco-manipulation with isomorphic exoskeleton cockpit,”
in Robotics Science and Systems (RSS), 2025.

[36] Y. Ze, Z. Chen, J. P. Ara’ujo, Z. ang Cao, X. B. Peng, J. Wu, and
C. K. Liu, “Twist: Teleoperated whole-body imitation system,” in
Conference on Robot Learning (CoRL), 2025.

[37] F. Liu, Z. Gu, Y. Cai, Z. Zhou, S. Zhao, H. Jung, S. Ha, Y. Chen, D. Xu,
and Y. Zhao, “Opt2skill: Imitating dynamically-feasible whole-body
trajectories for versatile humanoid loco-manipulation,” arXiv preprint
arXiv:2409.20514, 2024.

[38] M. Ji, X. Peng, F. Liu, J. Li, G. Yang, X. Cheng, and X. Wang, “Ex-
body2: Advanced expressive humanoid whole-body control,” ArXiv,
vol. abs/2412.13196, 2024.

[39] M. Gleicher, “Motion editing with spacetime constraints,” in Pro-
ceedings of the 24th annual conference on Computer graphics and
interactive techniques (SIGGRAPH). ACM, 1997, pp. 139–148.

[40] J. Lee and S. yong Shin, “A hierarchical approach to interactive motion
editing for human-like figures,” in SIGGRAPH, 1999.

[41] Z. Popović and A. Witkin, “Physically based motion transformation,”
in Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, 1999, pp. 11–20.

[42] F. G. Harvey, M. Yurick, D. Nowrouzezahrai, and C. J. Pal, “Robust
motion in-betweening,” ACM Transactions on Graphics (TOG), 2020.

[43] G. Delmas, P. Weinzaepfel, F. Moreno-Noguer, and G. Rogez, “Pose-
fix: Correcting 3d human poses with natural language,” in Interna-
tional Conference on Computer Vision (ICCV), 2023.

[44] J. Qin, Y. Zheng, and K. Zhou, “Motion in-betweening via two-stage
transformers,” ACM Transactions on Graphics (TOG), 2022.

[45] C. K. Liu, A. Hertzmann, and Z. Popović, “Learning physics-based
motion style with nonlinear inverse optimization,” ACM Transactions
on Graphics (TOG), vol. 24, no. 3, pp. 1071–1081, 2005.

[46] Y. Yuan, J. Song, U. Iqbal, A. Vahdat, and J. Kautz, “Physdiff: Physics-
guided human motion diffusion model,” International Conference on
Computer Vision (ICCV), 2022.

[47] F. Zargarbashi, J. Cheng, D. Kang, R. Sumner, and S. Coros,
“Robotkeyframing: Learning locomotion with high-level objectives
via mixture of dense and sparse rewards,” in Conference on Robot
Learning (CoRL), 2024.

[48] S. Lee, S. Lee, Y. Lee, and J. Lee, “Learning a family of motor skills
from a single motion clip,” ACM Transactions on Graphics (TOG),
vol. 40, no. 4, pp. 1–13, 2021.

[49] X. Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic,
and K. Sreenath, “Diffuseloco: Real-time legged locomotion control
with diffusion from offline datasets,” in Conference on Robot Learning
(CoRL), 2025.

[50] X. Huang, T. E. Truong, Y. Zhang, F. Yu, J.-P. Sleiman, J. Hodgins,
K. Sreenath, and F. Farshidian, “Diffuse-cloc: Guided diffusion for
physics-based character look-ahead control,” in SIGGRAPH, 2025.

[51] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[52] M. Gleicher, “Motion path editing,” in SIGGRAPH, 2001.
[53] S. Mysore, G. Cheng, Y. Zhao, K. Saenko, and M. Wu, “Multi-critic

actor learning: Teaching rl policies to act with style,” in International
Conference on Learning Representations (ICLR), 2022.

[54] T. Huang, J. Ren, H. Wang, Z. Wang, Q. Ben, M. Wen, X. Chen, J. Li,
and J. Pang, “Learning humanoid standing-up control across diverse
postures,” in Robotics Science and Systems (RSS), 2025.

[55] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odome-
try package by tightly-coupled iterated kalman filter,” Robotics and
Automation Letters (RAL), 2021.

[56] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”

arXiv preprint arXiv:2108.10470, 2021.
[57] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[58] T. Kobayashi, “L2c2: Locally lipschitz continuous constraint towards
stable and smooth reinforcement learning,” in International Confer-
ence on Intelligent Robots and Systems (IROS), 2022.

APPENDIX

A. Task Details

Motion editing. For each task, we selected two types of
keyframes: (1) Keyframes with semantics. For example, the
frame before and after jumping. (2) Keyframes without
semantics. These keyframes are uniformly sampled from a
clip of motion to ensure smoothness and tracking accuracy.
The global poses of the former keyframes are further edited
in one dimension. For motion details, please refer to the code.
Observations are composed of the following parts:
• Base angular velocity, 3 dimensions.
• Projected gravity ω̇k, 3 dimension.
• Joint positions ωk, 27 dimension.
• Joint velocities θ̇, 27 dimension.
• Previous actions ak−1, 27 dimension.
• Current phase ϕ, 1 dimension.
• Task variable ψ, 1 dimension.
• Lidar odometry, 3 dimensions. The relative position based

on the initial lidar coordinate.
• Base linear velocity, 3 dimension, critic-only.
• Reference joint positions, 27 dimensions, critic-only.

B. Baseline implementations.

• AMP-style and AMP-Mimic use 5-step DoF positions as
the discriminator observation. The weight of the style
reward is 0.1, while the weight of the task reward is 0.9.
The style reward is classified into the sparse reward group.

• DeepMimic-based baselines use the same rewards as ours.
Differently, DeepMimic-NoAdapt uses the original motion
and therefore has no adaptation ability. DeepMimic-Adapt
uses the rule-based augmented motions with a fixed phase
interval. DeepMimic-Adapt-∆ϕada additionally trains a
flexible phase interval.

• UniTracker follows its official implementation without
modification. It uses the rule-based augmented motions
during inference. UniTracker-Adapt additionally intro-
duces a fine-tuning stage on the augmented motions. Since
training UniTracker in terrains is not straightforward, we
only test UniTracker in five tasks that do not depend on
terrains.

The method of rule-based motion augmentation mainly fol-
low [52]. Specifically, we first determine the keyframes in
the reference motion, which are the same as those in the
motion processing stage. Then, we linearly adjust the global
position of in-between frames without adjusting their local
pose. Each task variable ψ results in a corresponding motion,
which is collected into Drule

ref .

C. Hardware Setup

We use the Unitree 29-DoF G1 humanoid robot (6 per leg,
7 per arm, and 1 in the waist). Waist roll and pitch joints are
locked for stability and safety. We used the MID360 lidar
on board with FastLIO [55] to obtain odometry. The PD
controller follows the designs in BeyondMimic [3], which
significantly improves the hardware deployment in terms
of stability, smoothness, and safety. Due to the drift issue
of the odometry and the randomly initialized robot’s pose,
we observe randomness in policy performance. Therefore,
we conduct multiple tests of each policy in each task for
statistical significance.

D. Training Details

Domain randomization. We apply domain randomization
during training in the simulation. The randomization terms
largely follow HoST [54], which are sufficient for overcom-
ing the sim-to-real gap. Table V below lists each term:

TABLE V: Domain randomization for adaptive motion tracking.

Term Value

Trunk Mass U(−2, 5)kg
Base CoM offset U(−0.1, 0.1)m (XYZ)
Link mass U(0.9, 1.1)× default kg
Fiction U(0.1, 1.1)
Restitution U(0, 0.1)
P Gain U(0.85, 1.15)
D Gain U(0.85, 1.15)
Motor Strength U(0.9, 1.1)
Control delay U(0, 100)ms

Termination conditions. We follow the termination con-
ditions in ASAP [7], including termination curriculum and
termination terms. Beyond that, given the nature of keyframe
tracking, we observe that very strict termination conditions
will impede the exploration of highly dynamic parts of the
motion (e.g., jumping). We therefore relax the conditions
after 6000 training epochs to ensure successful learning of
the whole motion.
Reward scales. We observe that the identical reward scales
of each keyframe in the sparse reward group will lead to
conservative policies, e.g., the policy learns to avoid jumping
to collect more local rewards. To overcome this problem, we
assign some keyframes with semantics with a higher reward
scale to encourage exploration of more dynamic behaviors.
PPO hyperparameters are listed in Table VI:

TABLE VI: Hyperparameters of PPO.

Hyperparameter Value

Number of envs 4096
Number of steps per iteration 75
Number of learning epochs 5
Clip range 0.2
Entropy coefficient 0.01
GAE balancing factor λ 0.95
Desired KL-divergence 0.01
Actor and double critic MLP [512, 256, 128]
Discount factor Sparse 1; Dense 0.99
Initial learning rate 1e−3

https://github.com/InternRobotics/AdaMimic

	Introduction
	Related Work
	Adaptable Humanoid Control
	Humanoid Motion Tracking
	Motion Adaptation

	Background: Humanoid Motion Tracking
	Motion representation
	Observations and actions
	Rewards and objectives

	Method: Adaptive Motion Tracking
	Problem Reformulation
	Keyframing and Editing: Drefinit Drefedit
	Stage 1: Motion Tracking with Fixed Phase Interval
	Sparse global reward
	Dense local reward

	Stage 2: Adapters Learning with Adaptive Phase Interval
	Phase adapter phase
	Tracking adapter track
	Optimization

	Real-World Deployment
	Implementation Details

	Experiments
	Experimental Setup
	Tasks
	Comparison methods
	Evaluation metrics

	Main Simulation Results
	Analyses of Key Designs
	Main Hardware Results

	Conclusion
	Limitations and Future Directions
	Appendix
	Task Details
	Baseline implementations.
	Hardware Setup
	Training Details

