Learning Humanoid Standing-up Control Across Diverse Postures
Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems, such as fall recovery. Existing approaches are either limited to simulations that overlook hard- ware constraints or rely on predefined ground-specific motion trajectories, failing to enable standing up across postures in real-world scenes. To bridge this gap, we present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch, enabling robust sim-to-real transfer across diverse postures. HoST effectively learns posture-adaptive motions by leveraging a multi-critic architecture and curriculum-based training on diverse simulated terrains. To ensure successful real-world deployment, we constrain the motion with smoothness regularization and implicit motion speed bound to alleviate oscillatory and violent motions on physical hardware, respectively. After simulation-based training, the learned control policies are directly deployed on the Unitree G1 humanoid robot. Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments.
Our RL-based framework learns posture-adaptive standing-up control from scratch via the following key design choices:
@article{huang2025host,
title = {Learning Humanoid Standing-up Control across Diverse Postures},
author = {Huang, Tao and Ren, Junli and Wang, Huayi and Wang, Zirui and Ben, Qingwei and Wen, Muning and Chen, Xiao and Li, Jianan and Pang, Jiangmiao},
journal = {arXiv preprint arXiv:2502.08378},
year = {2025},
}